
Nek5000 Developers’ Guide

1 Development of Single Element Operators, 1D

This section introduces practical considerations in the development and implementation of the
spectral element methods in Nek5000. A brief overview of basic theory is provided for requisite
background and notation. Code examples are provided in f77.

1.1 Theoretical Background: 1D

We begin with a brief introduction of typical spectral element (SE) operators in one space dimension,
using just one spectral element on the interval x ∈ Ω := [−1, 1].

Consider the 1D Poisson problem, −∇2u = f , u(−1) = u(1) = 0. The weighted residual formulation
for this problem amounts to finding an approximation u(x) =

∑

j ûjφj(x), where the ûjs are the
unknown basis coefficients and {φj(x)}, j = 1, . . . , n forms a linearly independent set of functions
spanning a chosen finite dimensional subspace. To simplify matters, we presently restrict our
attention to subspaces χN

0
that automatically satisfy the homogeneous boundary conditions (hence

the subscript 0)—this restriction will be lifted when we later consider DG-based implementations.
In this particular (1D, single element) case we take χN ≡ lPN(x), the space of all polynomials of
degree ≤ N , and χN

0
to be the set of functions in χN that satisfy the boundary conditions. A simple

counting argument shows that n = N − 1. Because it is relatively easy to implement Dirichlet or
Neumann conditions in the context of iterative solvers, we will defer details of boundary conditions
until later.

Thus, with some abuse of notation, we reformulate the Poisson problem into the variational problem,
Find u ∈ χN

0
such that

∫

Ω

dv

dx

du

dx
dx =

∫

Ω

v f dx ∀ v ∈ χN
0

. (1)

Equation (1) constitutes the fully discretized 1D Poisson problem using a Galerkin formulation.
Because v and u come from the same space, we have as many conditions (equations) to be satisfied
as unknowns.

To make things concrete, we consider a nodal formulation with

u(x) =
N
∑

j=0

ujhj(x), (2)

v(x) =
N
∑

i=0

vihi(x),

where hj(x) is the Lagrange interpolating polynomial satisfying hj(xi) = δij and δij is the Kronecker
delta function. With this choice, one has u(xi) ≡ ui, such that the basis coefficients represent nodal
values. (We therefore drop the hats on the coefficients.) Inserting the expansions (2) into (1) yields:



Find uj such that u ∈ χN
0

and

N
∑

i=0

N
∑

j=0

vi

(

∫

1

−1

dhi

dx

dhj

dx
dx

)

uj =
N
∑

i=0

N
∑

j=0

vi

(
∫

1

−1

hi(x)hj(x) dx

)

fj (3)

∀ vi such that v ∈ χN
0

. (Note that we have replaced f(x) by its nodal interpolant. This substitution
is valid because the error incurred is of the same order as the truncation error associated with
seeking u in χN .) Letting u := (u1, . . . , un)T and v := (v1, . . . , vn)T and assuming −1 = x0 < x1 <

. . . < xN = 1, we can express (3) in matrix form, Find u ∈ lRn
such that

vT Au = vT Bf ∀ v ∈ lRn, (4)

with

Aij :=
∫

1

−1

dhi

dx

dhj

dx
dx, (5)

Bij :=
∫

1

−1

hi(x)hj(x) dx. (6)

Because (4) must hold for all v ∈ lRn, we can write simply Au = Bf .

Note that, aside from the boundary treatment (yet to be discussed), (5) could just as easily be in
modal form if one took hi(x) to be something other than a Lagrange interpolant. Stability restricts
our attention to certain acceptable classes of basis functions hi(x). If modal, they are typically
linear combinations of orthogonal polynomials. If nodal, the nodes are typically chosen to be the
zeros of orthogonal polynomials or, equivalently, quadrature points associated with a particular
Gauss quadrature rule—such distributions tend to cluster points toward the ends of the interval.
Virtually all such combinations ensure stability, that is, reasonably small condition numbers of the
resultant matrices. One class of polynomials that is notoriously bad is the set hi = xi, which yields
condition numbers that grow as O(N !). Equally undesirable are Lagrange interpolants based on
uniform point distributions.

In the SEM, one typically (though not always) employs numerical quadrature to evaluate A and B.
If we take xi = ξi, with ξi ∈ [−1, 1] the Gauss-Lobatto-Legendre (GLL) quadrature points (Lobatto
implies that the endpoints are included) and associated weights ρi, then any polynomial integrand
of order up to 2N − 1 will be evaluated exactly. In the SEM, one thus uses:

Aij ≡
N
∑

k=0

ρk

dhi

dx

∣

∣

∣

∣

∣

ξk

dhj

dx

∣

∣

∣

∣

∣

ξk

, (7)

Bij ≈
N
∑

k=0

ρkhi(ξk)hj(ξk) = ρiδij. (8)

Thus a diagonal mass matrix, B, results from the GLL quadrature. The error incurred is again
on par with the truncation error. In this constant-coefficient 1D case, no error is incurred in using
quadrature for the stiffness matrix A.

Boundary Conditions

As mentioned earlier, we’ve neglected detailed boundary condition treatment to simplify the intro-
duction of A and B. For basis sets satisfying h0(xi) = δi0 and hN(xi) = δiN (a desirable property



in modal bases and automatically satisfied with nodal bases), one can simply restrict the range of
the indices i and j. (There is no issue with the integration index k—it always ranges from 0 to
M , where M is the number of points associated with the chosen quadrature rule. We will later
encounter cases where M > N , with quadrature weights and points denoted as ρM

k and ξM
k .) For the

case of homogeneous Dirichlet conditions on each end of the interval, we take i, j ∈ {1, . . . , N −1}2.
We occasionally denote the larger matrices having i, j ∈ {0, . . . , N}2 as Ā and B̄, particularly when
considering inhomogeneous boundary conditions, but typically drop the bars for simplicity (See [?]
for more detail regarding boundary conditions.)

Special Notation for 1D, Single Element

For the very special 1D case where Ω = Ω̂ := [−1, 1] we define B̂ := ρiδij and the 1D derivative
matrix,

D̂ij :=
dhj

dx

∣

∣

∣

∣

∣

ξi

i, j ∈ {0, . . . , N}2. (9)

From these building blocks on obtains a particularly simple form for the stiffness matrix, Â :=
D̂T B̂D̂, which is clearly symmetric semi-positive definite. Â has a one-dimensional null space
associated with the constant vector (1, 1, . . . , 1)T because D̂ is rank-deficient. (Why?) These “hat”
matrices are central building blocks in the multidimensional multi-element SE formulation.

1.2 1D Implementation

The f77 routine below will solve the 1D Poisson problem on a single element.

c-----------------------------------------------------------------------

program sem1d ! Single element SEM Poisson solver

parameter (nmx=40,nm2=nmx*nmx)

real ah(nm2),bh(nmx),ch(nm2),dh(nm2),zh(nmx),w(nm2)

real u(nmx),f(nmx),ue(nmx)

real a(nm2)

write(6,*) ’Input polynomial degree, N:’

read (5,*) n

nr = n+1 ! number of points in r direction

if (nr.gt.nmx) then

write(6,*) ’n must be less than’,nmx-1,’. Decrease n:’,n

call exitt

endif

ntot = nr ! total number of points

call semhat (ah,bh,ch,dh,zh,n) ! Generate 1D matrices: Ah,Bh, etc.

call make_rhs (f,ue,z,ntot) ! construct rhs and uexact

call col2 (f,bh,ntot) ! f <- B*f (1D only, because B=bh)



_ T

call get_mat_interior(a,ah,nr) ! restrict A = RAR for bcs (DFM02)

n1 = nr-2 ! number of points after restriction

call gaujord (a,n1,n1,w,ierr) ! Invert A. Sloppy, but effective.

! _

u(1 ) = 0. ! set endpoint values for u

u(nr) = 0.

! -1 _ __

call mxm(a,n1,f(2),n1,u(2),1) ! u = A B f ; _interior_ of Bf only

call err_chk(u,ue,ntot,n)

call exitt ! custom exit handler (for MPI, etc.)

end

c-----------------------------------------------------------------------

The required routines are provided in the Nek5000 svn repository.

c-----------------------------------------------------------------------

subroutine make_rhs (f,ue,x,n) ! construct rhs and uexact

real f(1),ue(1),x(1)

one = 1.

pi = 4.*atan(one)

k = 2

do i=1,n

argx = k*pi*x(i) ! Assume x \in [-1,1]

ue(i) = sin(argx) ! be certain that ue vanishes on dOmega !

f (i) = k*k*pi*pi*ue(i)

enddo

return

end

c-----------------------------------------------------------------------

subroutine err_chk(u,ue,ntot,n)

real u(1),ue(1)

umax = glamax(u,ntot) ! max of |u|, over all processors

emax = 0.

do i=1,ntot

err = abs(u(i)-ue(i))

emax = max(emax,err)

enddo

emax = glmax(emax,1) ! max of emax over all processors

emax = emax / umax ! Normalize

write(6,1) n,emax

1 format(i6,1pe14.4,’ error’)

return

end

c-----------------------------------------------------------------------

subroutine get_mat_interior(ai,a,n) ! restrict A to interior elements

real ai(2:n-1,2:n-1),a(n,n)



do j=2,n-1

do i=2,n-1

ai(i,j) = a(i,j)

enddo

enddo

return

end

c-----------------------------------------------------------------------

2 Development of Single Element Operators, 2D

We extend the 1D development of Section ?? to the two dimensional case making extensive use of the tensor-product
forms that are central to the efficiency of the spectral element method in higher space dimensions.

Proceeding as in the 1D case, we again consider the Poisson model problem in Ω ⊂ lR2. For simplicity, we consider
homogeneous Dirichlet conditions on ∂Ω. The variational formulation for this problem reads, Find u ∈ XN

0 such that

(∇v,∇u) = (v, f) for v ∈ XN
0 , (10)

with the L2 inner product (f, g) :=
∫

Ω
fg dV .

Initally, we consider the single element case on the square, Ω ≡ Ω̂ := [−1, 1]d, with d = 2 and use a tensor product
of our 1D polynomial basis functions as the basis for XN . Thus, any function u(r, s) ∈ XN can be written as

u(r, s) =
N
∑

j=0

N
∑

i=0

uij hi(r)hj(s), (11)

where the his are the 1D Lagrange interpolants of the previous section. Note that, as in the 1D case, u(ξp, ξq) ≡ upq,
which implies that our basis coefficients are also gridpoint values. Numerical solution of the model problem reduces
to finding the basis coefficients, uij , i, j ∈ {0, . . . , N}2. Because of the homogeneous boundary conditions, we
automatically have u0: = uN :

= u:0 = u
:N = 0, which of course is equivalent to restricting the sums in (11) to range

over {1, . . . , N − 1}2.

On Ω̂, the variational statement (10) becomes:

∫ 1

−1

∫ 1

−1

∂v

∂r

∂u

∂r
+

∂v

∂s

∂u

∂s
dr ds =

∫ 1

−1

∫ 1

−1

v f dr ds ∀v ∈ XN
0 . (12)

Inserting expansions of the form (11) into the above, we have

∑

ij,pq

vij

[
∫ 1

−1

∫ 1

−1

(

dhi

dr
hj(s)

)(

dhp

dr
hq(s)

)

+

(

hi(r)
dhj

ds

)(

hp(r)
dhq

ds

)

dr ds

]

upq =
∑

ij,pq

vij

[
∫ 1

−1

∫ 1

−1

(

hi(r)hj(s)
) (

hp(r)

Rearranging terms, we have

∑

ij,pq

vij

[(
∫ 1

−1

hj(s)hq(s) ds

)(
∫ 1

−1

dhi

dr

dhp

dr
dr

)

+

(
∫ 1

−1

dhj

ds

dhq

ds
ds

)(
∫ 1

−1

hi(r)hp(r) dr

)]

upq =
∑

ij,pq

vij

(
∫ 1

−1

hj(r)hq(s

which clearly reveals the role of the 1D operators of the previous section. Once again we replace all 1D integrals
with numerical quadrature and the discrete variation statement takes the form

∑

ij,pq

vij

(

B̂jqÂip + ÂjqB̂ip

)

upq =
∑

ij,pq

vijB̂jqB̂ipfpq. (15)



Let u = {uij}, i, j ∈ 1, . . . , N − 12 with similar expressions for v and f . Then 16 can be written in compact form as,
Find u ∈ lRn

such that

vT (B̂ ⊗ Â + Â ⊗ B̂)u = vT (B̂ ⊗ B̂)f ∀v ∈ lRn, (16)

or simply Au = Bf , with A := B̂ ⊗ Â + Â ⊗ B̂ defining the stiffness matrix and A := B̂ ⊗ B̂ the mass matrix.


